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Abstract. The spin 1/2 Heisenberg model on a square lattice with antiferromagnetic nearest- and next-
nearest neighbour interactions (the J1–J2 model) has long been studied as a paradigm of a two-dimensional
frustrated quantum magnet. Only very recently, however, have the first experimental realisations of such
systems been synthesized. The newest material, Pb2VO(PO4)2 seems to have mixed ferro– and antifer-
romagnetic exchange couplings. In the light of this, we extend the semiclassical treatment of the J1–J2

model to include ferromagnetic interactions, and present an analysis of the finite temperature properties
of the model based on the exact diagonalization of 8, 16 and 20 site clusters. We propose that diffuse
neutron scattering can be used to resolve the ambiguity inherent in determining the ratio and sign of J1

and J2 from thermodynamic properties alone, and use a finite temperature Lanczos algorithm to make pre-
dictions for the relevant high temperature spin-spin correlation functions. The possibility of a spin-liquid
phase occurring for ferromagnetic J1 is also briefly discussed.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.10.-w Theory and models of
many-electron systems – 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities,
critical exponents, etc.)

1 Introduction

The antiferromagnetic (AF) Heisenberg model on a square
lattice with added nearest neighbour bonds, commonly
referred to as the J1–J2 model, has long served as a
paradigm for a two dimensional frustrated AF. For a
model with only one adjustable parameter — the ratio
of next-nearest to nearest neighbour exchange J2/J1 — it
has an extremely rich phase diagram, offering the chance
to study Néel order (NAF) with a reduced sublattice mag-
netization for J2/J1 � 1, a collinear AF (CAF) phase
selected by an order from disorder effect for J2/J1 � 1,
and a spin-gapped phase (or family of phases) for inter-
mediate coupling. A correspondingly rich and occasionally
controversial literature, has accompanied the development
of these ideas [1].

More recently, the discovery of high Tc superconduc-
tivity in doped layered cuprates whose undoped parent
compounds are spin-half antiferromagnets, has lead to a
renaissance of interest in 2D frustrated magnets. The J1–
J2 model in particular has attracted renewed attention,
both because of its simplicity and the possibility that its
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spin-gapped phase might provide a realization of Ander-
son’s resonating valence bond (RVB) concept (see e.g. [2]).

Given all of this theoretical activity, it is surprising
that the behaviour of the J1–J2 model in the presence of
ferromagnetic (FM) exchange remains largely unexplored.

Frustrated FM’s have an interesting history in their
own right. The solid phases of He III have very com-
plex magnetic behaviour determined by competing FM
and AF multiple spin exchange processes. Under appro-
priate conditions He III may exhibit FM, AF or spin liquid
ground states. Another, solid state, example is provided
by the doped colossal magnetoresistance (CMR) mangan-
ites, where the competition between kinetic energy driven
FM and superexchange driven AF is widely believed to
result in a phase separation into regions with different
magnetic order. It is therefore worth asking whether the
J1–J2 model with FM J1 shows similarly exotic behaviour.

It is also perhaps a little surprising, considering the
wide variety of magnetic materials now under study, that
the first “J1–J2 compound”, Li2VOSiO4, was discovered
only very recently [3–5]. Li2VOSiO4 is an insulating Vana-
dium oxide, with spin S = 1/2 V4+ ions arranged in
square lattice planes, at the centres of VO4 pyramids.
These are linked by SiO4 tetrahedra, with Li ions occu-
pying the space between the V–O planes. Because of this
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relatively complex structure, the magnetic ions are well
separated, with weak superexchange between nearest and
next-nearest neighbour V ions mediated by more than one
intermediate O ion. A small number of related materials
have now been synthesized, and the preliminary analysis
of one of these, Pb2VO(PO4)2 seems to offer evidence of
mixed FM and AF exchange coupling [6]. However, a pre-
cise and unambiguous measurement of the exchange cou-
plings J1 and J2 by, e.g., inelastic neutron scattering, has
yet to be accomplished for any of these new compounds.

Motivated by Pb2VO(PO4)2, in this paper we pro-
vide an overview of the ground state and finite temper-
ature properties of the J1–J2 with mixed FM and AF
couplings. We present a comprehensive semiclassical anal-
ysis of the three dominant ordered phases of the model
— a uniform FM phase, and q = (π, π) Néel (NAF)
and q∗ = (π, 0), (0, π) collinear (CAF) antiferromagnetic
phases — together with an exact analytic diagonalization
of an eight site cluster, and finite temperature Lanczos re-
sults for the heat capacity and magnetic susceptibility for
16 and 20 site clusters.

We argue that, in addition to the known spin liquid
region for J1 > 0, J2 ∼ J1/2, where the NAF and CAF
phases compete, a new spin liquid region may exist for
J1 < 0, J2 ∼ −J1/2, where the FM and CAF phases com-
pete. We also propose that, because of their low magnetic
energy scales, diffuse neutron scattering at finite tempera-
tures can provide a very useful source of information about
the nature of the competing magnetic interactions in these
materials. With this in mind, we present the first quantita-
tive numerical estimates of the magnetic structure factor
S(q, T) for the J1–J2 model.

2 Zero temperature properties

2.1 Classical phase diagram and general arguments

We consider the spin 1/2 Heisenberg model on a square
lattice

H = J1

∑
〈ij〉1

Si · Sj + J2

∑
〈ik〉2

Si · Sk (1)

where the sum on 〈ij〉1 runs over nearest neighbour and
the sum 〈ik〉2 over diagonal next-nearest neighbour bonds.
We allow the exchange constants J1 and J2 to be negative
(FM) as well as positive (AF).

Since the properties of the J1–J2 model depend on the
relative and not the absolute size of the exchange cou-
plings J1 and J2, it is convenient to characterize it by an
overall energy scale

Jc =
√
J2

1 + J2
2 (2)

and a frustration angle φ such that

J1 = Jc cos(φ) J2 = Jc sin(φ)

φ = tan−1(J2/J1). (3)

φ
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Fig. 1. Classical phase diagram. Numbers are ratios of ex-
change couplings J2/J1 for phase boundaries as determined
from the classical ground state energy. The boundary between
FM and NAF phase is the line J1 = 0, J2 < 0 (J2/J1 = −∞
in the figure). Values of J2/J1 in parentheses show where zero
point fluctuations destroy the relevant order parameter at a
semiclassical level, as discussed in Section 2.2. The shaded ar-
eas for J1 > 0 correspond to the known spin-liquid regime, and
for J1 < 0 to another spin liquid region. The frustration angle
is given by φ = tan−1(J2/J1).

As discussed in Section 3, Jc can in principle be deter-
mined directly from the asymptotic behaviour of heat ca-
pacity and susceptibility at high temperatures. However
the different physical properties of the model depend on
the angle φ, and this is much harder to determine from
experiment.

Let us first consider the simplest possible classical
analysis of the model. We assume that the system orders
at zero temperature in such a way that all the spins are
oriented in a common plane [7]. In this case the ground
state energy of the J1–J2 model is minimised by an order
parameter with wave vector q = q∗ such that the energy
per spin

E(q∗) =
1
2
zS2 [J1γ1(q∗) + J2γ2(q∗)] (4)

takes on its minimal value. Here

γ1(q) = (cos(qx) + cos(qy))/2
γ2(q) = cos(qx) cos(qy) (5)

z = 4 is the lattice coordination number for each type of
bond and S = 1/2 is the size of the spin.

This analysis selects three phases, a Néel AF (NAF),
a collinear AF (CAF) and a uniform FM to give the
phase diagram shown in Figure 1 with the parameters
given in Table 1. Note that the coplanar spiral states with
q∗ = (2πn/m, 0), where {n,m} are integers, have energies
which interpolate between the CAF and FM, and all of
these states become degenerate exactly at the transition
from FM to CAF. The classical energies of FM, NAF and
CAF order parameters, together with a four sublattice
state with q∗ = (π/2, 0) are shown in Figure 2.
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Table 1. Parameters for classical ground states diagram.

q∗ Energy Range (J1, J2) Range φ

NAF (π, π) −J1/2 + J2/2 J1 > 0, J2 < J1/2 −π/2 < φ < tan−1( 1
2
)

CAF (0, π) or (π, 0) −J2/2 | J2 |>| J1 | /2 tan−1( 1
2
) < φ < π − tan−1( 1

2
)

FM (0, 0) J1/2 + J2/2 J1 < 0, J2 < −J1/2 π − tan−1( 1
2
) < φ < −π/2
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-0.5

0.0
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φ/π

E
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)

FM NAF CAF FM

Fig. 2. Classical energies E(q∗) as a function of the frustration
angle φ in units of Jc. Solid line: FM, q∗ = 0; dotted line: NAF,
q∗ = (π, π); dashed line: CAF, q∗ = (π, 0); long-dashed line:
four sublattice state for q∗ = (π/2, 0).

Each of the three lines selected as classical phase
boundaries have interesting properties which are related
to symmetries of the Hamiltonian. The mirror symmetry
of the classical phase diagram about the line J1 = 0 is
particularly easy to understand. Since the square lattice
is bipartite, the spins can be divided into A and B sub-
lattices and, the Hamiltonian remains invariant under the
transformation

SB → −SB J1 → −J1. (6)

This converts the classical NAF into a FM, and the clas-
sical q∗ = (0, π) CAF into the classical q∗ = (π, 0) CAF.
Exactly on the line J1 = 0 the A and B sublattices are en-
tirely disconnected, so it is possible to rotate the classical
NAF into the FM, and the classical q∗ = (π, 0) CAF into
the classical q∗ = (0, π) CAF, without any cost of energy.

Of course it is reasonable to ask whether such a naive
classical picture has any relevance at all for the physics
of a two dimensional frustrated spin 1/2 magnet. By way
of an answer, let us consider in turn the simplest possible
quantum analysis of the model.

Using the geometric trick of double counting all
J1 bonds and then setting J1 → J1/2, the cross-linked
square lattice can be expressed as four interpenetrat-
ing sublattices of edge sharing tetrahedra (cross-linked
squares). And since each of these cross-linked squares is a
complete graph, the Hamiltonian (1) can be rewritten in

Fig. 3. On the transition lines (a) J2/J1 = 0.5 and (b) J2/J1 =
−0.5 the Ising domain wall energy between CAF and NAF or
FM states vanishes and the system can break up into stripe
like domains with all possible values of total magnetization.

terms of the total spin on a square

H = −2J2S(S + 1)N +
∑

H (7)

where the sum runs over all N squares of the lattice,
and

H =
J1

4
Ω2

+ +
1
2

(
J2 − J1

2

)[
Ω2

A +Ω2
B

]
. (8)

The spins within each square are counted clockwise (or
counterclockwise) such that

Ω+ = ΩA +ΩB (9)

ΩA = SA
1 + SA

3 (10)

ΩB = SB
2 + SB

4 . (11)

With the Hamiltonian written in this way, the special role
of the classical transition lines J2 ± J1/2 = 0 becomes
self-evident. Moreover, on these lines, the lowest energy
is achieved by any state for which the sum (difference) of
the A and B sublattice magnetisations vanishes in each
square.

Classically, this condition can be satisfied by an ex-
ponentially large number of states. As a result, at these
transitions, it becomes possible to break the system up
into stripes. In the Ising limit these stripes are the alter-
nating domains illustrated in Figure 3. The special (local)
degeneracy of the Hamiltonian (7) also reveals itself in
lines of zeros in the spinwave spectrum, discussed below.

We now use equation (7) to construct a minimal quan-
tum theory for the model. The state of the whole system
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Table 2. Parameters for the ground states of a single cross linked square.

(Ω, ωA, ωB) Energy Range (J1, J2) Range φ

“NAF” (0, 1, 1) −J1 + J2/2 J1 > 0, J2 < J1/2 −π/2 < φ < tan−1( 1
2
)

“CAF” (0, 0, 0) −3J2/2 J2 > J1/2 tan−1( 1
2
) < φ < π − tan−1( 1

4
)

FM (2, 1, 1) J1/2 + J2/2 J1 < 0, J2 < −J1/4 π − tan−1( 1
4
) < φ < −π/2
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Fig. 4. Energies of the six eigenstates of a single tetrahedron,
as a function of the frustration angle φ, in units of Jc.

is determined if we specify all of the spins on any of the
four sublattices of tetrahedra. So a lower quantum bound
on the ground state energy can be obtained by considering
a single isolated tetrahedron.

We find what are essentially the same three ground
states as a function of φ, with energies and quantum num-
bers given in Table 2. The full set of energy eigenvalues
is shown in Figure 4. Apart from in the FM phase, where
they must agree, the upper bound on the ground state en-
ergy obtained from the simple classical analysis, and the
lower bound obtained from this minimal quantum esti-
mate are generally quite different. However, it is far more
significant that the same three phases are found1, with
the same phase boundaries — excepting that between the
CAF and FM, where quantum fluctuations extend the
CAF regime at the expense of the FM regime.

This simple correspondence between the most naive
classical and quantum theories lends us some confidence
in both. And although neither can give a complete descrip-
tion of the model, both can be improved systematically,
as discussed in later sections of the paper. The key ques-
tion which remains is how the phase transitions between
the three dominant phases take place. The existence of
an extensive set of spiral states degenerate with the FM
and CAF order parameters at φ = π − tan−1(1/2), and
the complicated level crossings for the tetrahedron near

1 Here “phase” should be understood to mean a ground state
wave function with the same total spin and spatial symmetries
as the corresponding classical order parameter — SU(2) invari-
ance clearly cannot be spontaneously broken in a small cluster.

φ = tan−1(1/2) and φ = π− tan−1(1/2) already hint that
these can be non-trivial.

2.2 Semiclassical spin wave analysis

The first step to improving on the naive classical phase
diagram is to consider the influence of semiclassical spin
wave excitations. While for the FM, spin waves are eigen-
states, the frustrated NAF and CAF phases both show
marked fluctuations at zero temperature. All three phases
must be unstable at finite temperatures, as long range or-
der would violate the Mermin-Wagner theorem. None the
less, linear spin wave theory captures the essential physics
of the ordered phases, and provides some interesting hints
about how the classical phase diagram must be modified
in the quantum case.

2.2.1 FM phase

Expanding about the FM phase we find a spin wave dis-
persion

ω(q) = −4S[J1 + J2] + 4S[J1(cx + cy)/2 + J2cxcy] (12)

where
cx = cos(qx) cy = cos(qy) (13)

in units such that the lattice constant a = 1. The spin
wave dispersion for a range of values of φ throughout the
FM phase is shown in Figure 5. Note that in this and
all subsequent plots of spin wave dispersion, the qx and
qy values run from −π to π, i.e. over the full Brillouin zone
(BZ) for the square lattice, and not the reduced magnetic
BZ’s appropriate to the NAF or CAF phases.

While the fully polarized FM ground state remains
an exact eigenstate of the frustrated model, its disper-
sion is profoundly modified by competing interactions. At
the boundary with the NAF phase for φc = −π/2, the
dispersion is that of a pure J2 FM, which has the same
magnetic BZ as the NAF phase, and therefore zeroes at
q = (π, π) and symmetry points, in addition the usual
q = (0, 0) Goldstone mode. Deep within the FM phase for
φ = −π + tan−1(1/2), the dispersion behaves as

ω(q) ∼ Dq2 (14)

where the stiffness constant D is given by

D = −(J1 + 2J2)S (15)
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Fig. 5. Evolution of spinwave dispersion in FM phase. From left to right — border with NAF, deep within FM phase, pure
nearest neighbour exchange, border with CAF.
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Fig. 6. Evolution of the spin stiffness D in the FM phase
(solid line), and of the spinwave velocities v in the NAF phase
(dotted line) and vx, vy in the CAF phases (dashed lines), as a
function of the frustration angle φ in units such that the lattice
constant a = 1 and Jc = 1.

in the zone centre, but vanishes on the zone boundary.
The variation of D as a function of φ is plotted in Figure 6
For φ = −π the dispersion is that of the familiar pure J1

FM. And, finally, on the boundary between FM and CAF
for φc = π − tan−1(1/2), the dispersion vanishes on the
lines qx = 0 and qy = 0. These lines of zeros are a direct
manifestation of the special local symmetry discussed in
Section 2.1.

The heat capacity of a FM in 2D is linear at low tem-
peratures, reflecting a constant density of states at zero
energy, and scales as

CV =
ζ(2)
2π

(
T

D

)
(16)

where ζ(2) = π2/6. The coefficient of T as function of φ is
plotted in Figure 7. It diverges at the transition between
the FM and the CAF, but approaches a constant at the
transition between FM and NAF.

2.2.2 NAF phase

The spinwave spectrum for the NAF is given by

ω(q) =
√
A2

q −B2
q (17)
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γ

Fig. 7. Evolution of the heat capacity CV as a function of the
frustration angle φ. In FM regions the quantity plotted is the
prefactor γ of CV = γT , and in AF regions the prefactor β of
CV = βT 2, where temperature is measured in units of Jc.

where the coupling between spins on a given sublattice is

Aq = 4S[J1 − J2(1 − cxcy)] (18)

and the coupling between the two sublattices is

Bq = 2J1S(cx + cy) (19)

Where J2 is FM, it acts to stabilize the NAF order, where
J2 is AF, it acts to destroy it. Once again this competition
is visible in the spin wave dispersion, as show in Figure 8.

At the boundary with the FM phase for φc = −π/2,
the dispersion is that of a pure J2 NAF, and exactly
matches that of the FM on this phase boundary. Deep
within the NAF phase for φc = − tan−1(1/2), the low
energy spin wave dispersion behaves as

ω(q) ∼ vs | q − q∗ | (20)

where the isotropic spin wave velocity is given by

vs = 2S
√

2J1(J1 − 2J2) (21)

and q∗ = (π, π), as expected. However it exhibits a marked
dispersion about the magnetic zone boundary, as com-
pared to the pure J1 NAF for φ = 0. Finally, on the
boundary with the CAF phase for φc = tan−1(1/2), the
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Fig. 8. Evolution of spinwave dispersion in NAF phase. From left to right — border with FM, deep within NAF phase, pure
nearest neighbour exchange, border with CAF.
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Fig. 9. Different estimates of the ground state energy per spin
as a function of the frustration angle φ in units of Jc. Upper-
most (solid) line — classical energy of FM, NAF and CAF
order parameters given by equation (4). Lowermost (dotted)
line — lower quantum bound given by the ground state of
the Hamiltonian (7). Inner (dashed) line — semiclassical spin-
wave theory. Diamonds — variational lower bound based on
diagonalization of a nine-site cluster. Solid and open circles —
ground state energy obtained from exact diagonalization of a
16– and 20–site cluster, respectively. Note that in the collinear
phase the variational bound from the nine-site cluster and the
exact-diagonalization result for the 16-site cluster nearly coin-
cide.

dispersion vanishes on the lines qx = 0, qx = ±π and
qy = 0, qy = ±π. Values of the spinwave velocity vS are
shown in Figure 6, in units in such that the lattice spacing
a = 1 and the overall energy scale Jc = 1.

The low temperature heat capacity of the NAF is con-
trolled by the spin wave velocity and is given by

CV =
3ζ(3)
2π

(
T

vS

)2

(22)

where ζ(3) = 1.202 . . . The relevant coefficient of T 2, as a
function of φ is plotted in Figure 7.

The quantum zero point corrections to the ground
state energy also vary strongly as a function of φ within
the NAF state, vanishing altogether at the boundary with
the FM. These are shown in Figure 9, together with the
upper classical and lower quantum bounds discussed in
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Fig. 10. Evolution of the inverse transverse susceptibility χ−1
⊥

as a function of the frustration angle φ, in units such that
Jc = 1 and (gµB)2 = 1.

Section 2.1. In fact, near the transition from NAF to CAF,
the semiclassical estimate of the ground state energy sur-
prisingly well with series expansion estimates [8]. It also
lies very close to our numerical estimates and an improved
variational quantum bound, discussed below. These are
also plotted in Figure 9.

It is also interesting to consider the φ dependence of
the experimentally accessible transverse susceptibility χ⊥
which, within spin wave theory for a two sublattice AF is
given by

χ−1
⊥ =

2
S
Aq=0 (23)

in units such that the overall prefactor (gµB)2 = 1. The
variation of the inverse susceptibility as a function of φ,
normalized to the value for φ = 0, is shown in Figure 10.
The susceptibility is a continuous function of φ, diverging
(as χ⊥ ∼ (φ − φ∗)−1) at the FM phase boundary, and
matching that of the CAF at the other end of the NAF
phase. However its derivative is discontinuous across each
transition, reflecting the changing symmetry of the order
parameter.

We can gain still more information about the evolution
of the NAF state for different couplings by calculating
the sublattice magnetisation mS . Quantum fluctuations
reducemS from its classical value MA = 1/2, and in terms
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Fig. 11. Evolution of sublattice magnetization ms as a func-
tion of the frustration angle φ.

of the coefficients defined above, it is given by:

mS =
1
2

∑
q


1 − Aq√

A2
q −B2

q


 . (24)

The variation of ms as a function of φ is shown in Fig-
ure 11. The sublattice magnetization of the NAF vanishes
for φ/π = 0.12, corresponding to a ratio of J2/J1 = 0.38.
This result implies that, at a semiclassical level, the NAF
order parameter is destroyed by fluctuations long before
the competing CAF becomes energetically favourable. His-
torically, this was the first signature of the existence of an
intermediate, spin-gapped phase between the NAF and
CAF in the purely AF J1–J2 model [9]. We return to this
point in the context of the model with mixed FM and AF
couplings below.

2.2.3 CAF phase

The CAF phase can be thought of as two interpenetrating
NAF lattices of diagonal J2 bonds. At a purely classical
level, these sublattices are decoupled and can be rotated
freely about one another. However quantum fluctuations
stabilise the configuration in which the Néel vectors of
both sublattices, and therefore the associated spins, are
collinear. This tendency of fluctuations to favour collinear
spin configurations is well-known [10–12], and for small
J1/J2 is independent of the sign of J1. We have checked
explicitly that this order from disorder effect survives for
larger, FM values of J1 by performing spin wave calcu-
lations for more general four–sublattice states. Details of
these will be reproduced elsewhere. We note that any fur-
ther two–sublattice canting of the CAF state is energeti-
cally unfavourable at a classical level, even for quite large
FM J1.

Once the two sublattice CAF has been selected, the
analysis of the spinwave spectrum is straightforward. The

spinwave spectrum for the CAF is once again of the form
equation (17). For the CAF order parameter with q∗ =
(π, 0) we find

Aq = 2S[2J2 + J1cy] (25)
Bq = 2Scx[J1 + 2J2cy] (26)

in accordance with [9] (the result for q∗ = (0, π) can be
obtained simply by exchanging x and y above). The evo-
lution of the spin wave dispersion within the CAF phase
is shown in Figure 12, plotted within the full BZ for the
square lattice.

At the border with the NAF phase, for φc =
tan−1(1/2) the CAF has lines of zero modes for qx = 0,
qx = ±π and qy = ±π, but not for qy = 0, and has
maxima at q = (±π/2, 0). Within the CAF phase for AF
couplings, for φ = π/4, the dispersion has peaked max-
ima at q = (±π/2, 0), dispersionless ridges for qy = ±π/2.
In all cases the dispersion had zeros at the wave vectors
appropriate to the order parameter, i.e. q = (0, 0) and
q∗ = (±π, 0). Near to these we find a linear but anisotropic
spin wave dispersion

ω(q) ∼
√

[vx
s (qx − q∗x)]2 + [vy

s (qy − q∗y)]2 (27)

where the spin wave velocities are given by

vx
S = 2J2 + J1 (28)

vy
S =

√
(2J2 + J1)(2J2 − J1). (29)

The low temperature heat capacity of the CAF is con-
trolled by the average spin wave velocity ṽS=(vx

Sv
y
S)

1
2 and

is given by the equivalent of equation (16)

CV =
3ζ(3)
2π

(
T

ṽS

)2

(30)

where ζ(3) = 1.202 . . . The relevant coefficient of T 2, as a
function of φ is plotted in Figure 7.

The symmetry between the x and y axes is broken by
the CAF order parameter, which is reflected in the differ-
ent values of vx and vy. However, at a semiclassical level,
this symmetry breaking is not reflected in different val-
ues the transverse susceptibility χ⊥x and χ⊥y — plotted
in Figure 10. This can be understood as follows — the
transverse susceptibility associated with an AF can be ex-
pressed in terms of the spin stiffness ρs and the spinwave
velocity vs using the hydrodynamic relation χ⊥ = ρs/v

2
s .

However at this level of approximation the variation of D
with angle in the plane is precisely that required to can-
cel the variation of vs. Once again, the special role of the
lines J1 = ±2J2 is evident — at the borders of the CAF
phase the solutions for vy become imaginary, while the
transverse susceptibility diverges.

For the pure next-nearest neighbour model at φ = π/2,
the magnetic BZ is further reduced, with additional min-
ima at q = (±π,±π) and qy = ±π. The dispersion ex-
hibits ridge like maxima for q = (±π/2,±π/2). Within
the CAF phase for partially FM coupling at φ = 3π/4, the
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dispersion is that for φ = π/4 described above, but with
q translated by (π/2, 0). Finally, for φc = π− tan−1(1/2),
at the boundary with the FM state, it has maxima for
q = (±π/2,±π) and line zeros for qx = ±π and qy = 0,
qy = ±π, but not for qx = 0.

While it was possible to exactly match up the spin
wave dispersion on the boundary between the NAF and
FM, where the A and B sublattices decouple, this can-
not be done for the boundaries between the CAF and
NAF or CAF and FM. The different way in which the
CAF order parameter breaks the lattice symmetry is im-
mediately apparent in the different number of lines of
zero modes present in the CAF for φ = tan−1(1/2) and
φ = π − tan−1(1/2), as compared with the NAF or FM.

This rules out a smooth transition from one state
to the other, and at a semiclassical level, the only way
in which the system can avoid embarrassment is to dis-
solve the classical CAF order parameter before the phase
boundary is reached. And indeed the relevant sublattice
magnetisation does vanish for φ/π = 0.15 (J2/J1 = 0.52),
as the CAF approaches the NAF, and for φ/π = 0.85
(J2/J1 = −0.51), as the CAF approaches the FM phase.
Consistent with this, the heat capacity (Fig. 7) shows clear
anomalies as a function of φ at either end of the CAF
phase.

2.3 Beyond the semiclassical picture

The simple quantum and semiclassical arguments pre-
sented above give rise to an equally simple and self consis-
tent picture of the phase diagram of the J1–J2 model as a
function of φ. The model has three dominant phases, FM,
NAF and CAF. The phase transition between the FM and
NAF is straightforward. The phase transitions between
the CAF and NAF, and the CAF and FM are not, and
probably, take place through an intermediate phase.

The different estimates of the ground state energy of
the system in Figure 9 give us further reason to believe
that this semiclassical picture is not far from the truth.
Clearly the spin wave estimate of the ground state energy
lies a long way above the lower bound from the tetrahedral
cluster. But, as discussed in Appendix C, it is possible
to construct a much better quantum bound variationally,
from the numerical diagonalization of a 9 site clusters with
modified boundary conditions. Increasing the cluster size
to 13 sites does not lead to any significant change in the
ground state energy. Since the semiclassical estimate is
within a few percent of the quantum bound on the ground
state energy for almost all values of φ, there is little room
for drastic changes in the phase diagram.

But of course this is not the end of the story. Even
if our semiclassical estimate of zero point energy is reli-
able, fluctuations will strongly renormalise the semiclas-
sical spin wave spectra and correlation functions. In the
pure J1 Néel AF [13] these corrections lead to an enhance-
ment of the spin wave velocity

vS → ZcvS Zc = 1 +
0.1580

2S
+

0.0216
(2S)2

+ . . . ≈ 1.1794

a suppression of the perpendicular susceptibility

χ⊥ → Zχχ⊥ Zχ = 1 − 0.551
2S

+
0.065
(2S)2

+ . . . ≈ 0.514

and a slight enhancement of the sublattice magnetisation,

mS → ZmS Zm = 1 − 0.383
2S

+
0.007
(2S)2

+ . . . ≈ 0.613.

The values of the coefficients Z as a function of J1 and
J2 for J2 �= 0 remain to be calculated, and until they
are known, quantitative comparison of the numbers found
above with experiment must be approached with some
caution. However experience with the pure J1 model sug-
gests that, as long as fluctuations do not destroy magnetic
order completely, corrections are reasonably uniform and
the semiclassical description of spin correlations remains
qualitatively, if not quantitatively valid.

This “renormalised classical” physics should be ex-
pected to break down near the highly frustrated transi-
tions into, and out of the CAF phase. The large body of
existing work on the J1–J2 model with AF couplings sug-
gests that the space between the NAF and CAF phases is
filled by a spin-gapped ‘spin-liquid’ phase. Spin liquids are
known to occur adjacent to a FM phase in the Heisenberg
model on a triangular lattice with competing FM and AF
cyclic exchanges [14], and on a honey–comb lattice with
competing J1, J2 and J3 (next–next nearest neighbour)
interactions [15].

So what happens between the FM and CAF phases in
our model?

At least at first glance, the situation seems to be very
similar. A high local degeneracy in the classical spectrum
— a family of degenerate order parameters for φ = π −
tan−1(1/2) — leads to line zeros in the spin wave velocity
and vanishing sublattice magnetisation exiting the CAF
state towards the FM. Exactly the same things happen at
the much studied boundary with the NAF. This similarity
is by no means proof of the existence of a spin liquid state
in the J1–J2 model with FM J1, but it is a sufficient reason
to start looking for one.

Further circumstantial evidence in favour of this hy-
pothesis can be obtained from the exact analytic diagonal-
ization of an 8-site cluster described in Appendix B. The
resulting energy spectrum, classified by spin, is shown in
Figure 13. The straight–forward phase transition between
NAF and FM states for φ = −π/2 shows up as a multiple
crossings of ground state and excitation energy levels, all
of which take place at the same critical value of φ = −π/2.

Where the singlets associated with NAF and CAF or-
der parameters cross, the reordering of excited states does
not take place at a single critical value of φ, but is spread
out over a finite range of φ. Simply counting where the
lowest lying triplet excitation crosses the lowest lying sin-
glet excitation either side of the ground state crossing
gives a remarkably good (if arbitrary) estimate of the ex-
tent of the spin liquid region — from J1/J2 = 0.38 to
J1/J2 = 0.60, values which are comparable with those
found in the existing literature [2,5,9,16–20].
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Fig. 12. Evolution of spinwave dispersion in CAF phase. From left to right — border with NAF, within CAF phase for AF
couplings, pure next nearest neighbour exchange, border with FM.
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Fig. 13. Energy levels (per spin) of the 8 site cluster, classified according to total spin Ω as a function of the frustration angle φ,
in units of Jc: solid lines — Ω = 0 (singlet); dotted lines — Ω = 1 (triplet); short-dashed lines — Ω = 2; long-dashed lines —
Ω = 3; dash-dotted line — Ω = 4 (maximal spin).

Examining the level crossings associated with the tran-
sition from CAF to FM we see the same extended struc-
ture. In this case applying the same naive criterion based
on the crossing of first excitations would predict a spin
liquid region from J1/J2 = −0.38 to J1/J2 = −0.60. How-
ever, in order to obtain a more serious numerical estimate
of the domain of stability of the CAF and FM order pa-
rameters it would be necessary to look at the finite size
scaling of not only the first excitation energies, but of the
entire “Anderson Tower” of states [21–23] which go to
make up the CAF order parameter in the thermodynamic
limit, for a sequence of clusters including those of rela-
tively large sizes (e.g. 32 and 36 sites). This analysis is
beyond the scope of the present paper.

It also seems premature to speculate about the nature
of any possible new phase appearing between the FM and
CAF. Thinking classically, one might imagine that a spi-
ral or canted state arises which interpolates between the
CAF and FM. Adding an AF J3 interaction to the model
would tend to favour such states (cf. [12]). However our
preliminary analysis suggests that, for the relevant range
of J1 and J2 (with J3 ≡ 0), these states are still more un-
stable against fluctuations than the CAF with which they
compete.

In short, while the outcome remains uncertain, there is
clearly reason to suspect that something interesting hap-
pens at the transition from CAF to FM. In marked con-
trast to the J1–J2 model with AF interactions, the ex-

isting literature on this problem appears to be in its in-
fancy [24,25].

3 Finite temperature properties

3.1 General considerations

The energy and temperature scales of the J1–J2 model are
controlled by the single parameter Jc. In principle, this can
be determined directly from the asymptotic behaviour of
the magnetic contribution to the heat capacity at high
temperatures [18,19,26]

CV (T → ∞) =
3
8
J2

c

T 2
+ . . . (31)

written here in units ‘natural’ such that kB = 1. It also
controls the deviation of the high temperature magnetic
susceptibility from a simple Curie law

χ−1(T → ∞) =
T +ΘCW + 1

2
J2
c

T + . . .

C
(32)

where we again work in ‘natural’ units such
that (gµB)2 = 1,

C =
S(S + 1)

3
=

1
4

(33)
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Table 3. Compilation of the experimental results and theoretical estimates on the Curie-Weiss temperature ΘCW = (J1+J2)/kB,
the ratio ΘCW/Tχ of it to the maximum position of the uniform magnetic susceptibility χ(T ) and the corresponding frustration
parameters. The data are taken from [4–6]. The displayed theoretical values for the frustration parameters obtained by fits to
high-temperature series expansions are taken from [18,19]. The reference numbers are used to label the corresponding columns.
The unlabelled columns contain our own estimates derived from the dependence of ΘCW/Tχ on φ, see Figure 15. The ±
subscripts of φ and J2/J1 distinguish the two different possible points in the (J1, J2) phase diagram.

Pb2VO(PO4)2 Li2VOSiO4 Li2VOGeO4

[6] [4] [5] [18] [19] [4] [18]

ΘCW[K] 4 7.4 8.2 9.65 7.2 5.2 9.8

ΘCW/Tχ 0.49 1.39 1.69 1.49

φ−/π 0.67 0.64 0.41 0.27 0.47 0.43 0.36 0.38 0.43 0.33

φ+/π –0.11 0.03 0.13 0.06 0.08 0.07

(J2/J1)− –1.64 –2.21 3.5 1.1 11.7 4.76 2.13 2.5 4.76 1.69

(J2/J1)+ –0.37 0.1 0.44 0.18 0.25 0.24

and
ΘCW = 4(J1 + J2)C = J1 + J2. (34)

However, while knowledge of both Jc and ΘCW fixes J1 +
J2 and | J1−J2 |, the sign of J1−J2 remains undetermined
since there are two possible values φ± of the angle φ. And
because φ determines the physics of the J1–J2 model, this
uncertainty can lead to alternative parameterizations of
the model which lie in completely different phases.

The coefficients of the high temperature series expan-
sions of the heat capacity and susceptibility J1–J2 model
are known to high order [18,26], and their reliability at
low temperatures can be greatly improved by carefully
constraining the analytic continuation of the high temper-
ature series [27,19]. None the less it proves very difficult
to determine J1 and J2 unambiguously from experimental
measurements of heat capacity and magnetic susceptibil-
ity. In the case of Li2VOSiO4, where both J1 and J2 are
believed to be antiferromagnetic, estimates of the ratio of
J2/J1 vary by more than a factor ten [4,5,18,19,26], see
Table 3. Preliminary analysis of Pb2VO(PO4)2, where ei-
ther J1 or J2 is believed to be ferromagnetic, does not
unambiguously determine which is the ferro- and which
the antiferromagnetic coupling [6].

In the light of this uncertainty and controversy, we
have used our analytic solution of the 8-site cluster and an
implementation of the finite temperature Lanczos method
(ftlm) to determine the heat capacity, uniform magnetic
susceptibility and static spin structure factor for the model
on 16- and 20-site clusters with periodic boundary condi-
tions. In particular, below, we present predictions for dif-
fuse neutron scattering cross sections which are difficult
to access by series expansion, and which can in principle
remove all ambiguity about the parameterization of the
model.

Since these calculations are based on small clusters
of spins, they are of limited use in addressing questions
such as the finite temperature Ising transition observed
in Monte Carlo simulations of the classical square–lattice
J1–J2 model [28]. However they should provide a reliable
guide to physics at finite temperatures and short length
scales, particularly in the frustrated phases of the model,
where long range order is greatly suppressed.

J1

J2

Fig. 14. Tiles of size eight, 16, and 20 used in the finite-
temperature calculations. In the lower right corner, the la-
belling of the two exchange constants is illustrated.

The ftlm is based on the Lanczos algorithm which
is used to iteratively exactly diagonalize the Hamiltonian
matrix for the cluster considered: the Lanczos algorithm
starts with a randomly chosen vector in the Hilbert space.
Successive applications of the Hamiltonian eventually “ro-
tates” the starting vector to the ground state of the system
(if the starting vector is not orthogonal to it), thereby
generating a tridiagonal matrix having eigenvalues and
eigenvectors corresponding to the lowest eigenvalues and
eigenvectors of the full Hamiltonian (this always has to
be checked). The ftlm utilizes the eigenvalues and eigen-
vectors of 1000 successive diagonalizations with different
random starting vectors to generate the partition function
and the expectation values as defined below. For a detailed
description of it, see [29].

The three clusters, together with the realisation of the
spin exchange interactions, are shown in Figure 14. Due
to the symmetry of the model, these are the only possi-
ble squares of size N with 4 < N < 32 which are com-
patible with both collinear and Néel order. With three
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Fig. 15. Ratio of the Curie-Weiss temperature ΘCW to the
maximum position Tχ of the uniform magnetic susceptibil-
ity χ(T ) as a function of the frustration angle φ. The solid
(dashed) line denote the results for the 20-site (16-site) cluster,
the dotted line comprises the result for the eight-site cluster.
The straight horizontal lines correspond to the experimental
values ΘCW/Tχ = 0.49, 1.39, 1.49 for Pb2VO(PO4)2 (dash-
dotted) [6], Li2VOSiO4 (dashed) [4], and Li2VOGeO4 (long-
dashed) [4], respectively.

cluster sizes at hand, knowing that the eight-site cluster
is almost a complete graph and the 16-site cluster a four-
dimensional hypercube, we did not attempt to perform a
finite-size scaling analysis. For this to be meaningful, re-
sults for a system size at least N = 32, and as well as for
different (i.e. open) boundary conditions would be needed.

3.2 Heat capacity and magnetic susceptibility

In units with dimensions restored, the heat capacity and
the magnetic susceptibility are defined by

χ(T ) =
NAµ0g

2µ2
B

NkB

1
T

(〈(
Stot

z

)2〉− 〈Stot
z

〉2)
, (35)

CV (T ) =
NA

NkB

1
T 2

(〈
H2
〉− 〈H〉2

)
, (36)

where 〈. . . 〉 denotes the thermal average, Stot=
∑

i Sz
i

z the z
component of the total momentum of the system, and N
the number of sites of the system considered. NA is the
Avogadro constant, µ0 the magnetic permeability, g the
gyromagnetic ratio, µB the Bohr magneton, and kB the
Boltzmann constant. For the present nonmagnetic (zero
field) case we have 〈Stot

z 〉 = 0.
A commonly used experimentally accessible parameter

to determine the frustration angle φ (and hence the value
J2/J1) is the ratio of the position Tχ of the maximum of
the magnetic susceptibility χ(T ) to the Curie-Weiss tem-
perature ΘCW. To avoid singularities, we plot the inverse
of this quantity, which is shown in Figure 15.

Apart from the strongly frustrated spin-liquid region
around φ ≈ π/6, the differences in ΘCW/Tχ for the 16-

and 20-site cluster are small. This suggests that the be-
haviour of χ(T ), at least for kBT ≥ Jc, is dominated by
correlations which are fully taken into account already by
the small clusters, and therefore finite-size effects do not
play an important role.

A common feature of ΘCW/Tχ for all cluster sizes
is the existence of two possible angles φ− and φ+ for
a given value for ΘCW/Tχ, reflecting the fact that from
the knowledge of ΘCW and Jc alone, φ cannot be deter-
mined unambiguously. We have indicated the experimen-
tal values taken from [4,6] for ΘCW/Tχ for Pb2VO(PO4)2,
Li2VOSiO4, and Li2VOGeO4 by the thin horizontal lines
in Figure 15. For all three compounds, φ− corresponds to
a realization of the phase with strong collinear antiferro-
magnetic correlations, and φ+ to the phase where Néel-
type correlations dominate. Interestingly,
some values of φ+ lie very close to the spin–liquid regime
0.115 < φ/π < 0.183.

Table 3 holds a summary of the values forΘCW/Tχ and
φ± = tan−1 ((J2/J1)±) found in the literature [4–6,18,19],
together with our findings. ΘCW = (J1 + J2)/kB can be
determined by a fit of a Curie-Weiss law to the high-
temperature tail of the susceptibility χ(T ), as was done
for the two Li compounds [4,5]. This procedure can be
improved by including higher-order terms in an expansion
of χ(T ), see equation (32). For the Pb compound [6], the
high-temperature series expansion for χ(T ) found in [18]
was applied. For the compound Li2VOSiO4 [4,5], this
leads to errors of the order of 10%.

In contrast to ΘCW, the determination of the frustra-
tion angle φ is much more involved. Melzi et al. [4,5] use
exact diagonalization data for the heat capacity of the
eight- and 16-site clusters [30,31], while again fits to high-
temperature series expansions are used in [6,18,19]. In
particular for Li2VOSiO4, the results for J2/J1 differ by
more than an order of magnitude. Still they indicate qual-
itatively the same ordered phase in the ground state of the
compound.

However, J1 and J2 are not uniquely determined by
this analysis of the temperature dependence of the mag-
netic susceptibility or the comparison with the behaviour
of the specific heat alone. We will return to this issue in
the next section discussing the static spin structure factor.

We have computed the heat capacity CV (T ) in the full
range of the frustration angle φ for different cluster sizes.
Figure 16 shows the maximum of the heat capacity as a
function of φ. The bottom part of the figure shows the
frustration dependence of the temperature TCV at which
the maximum is reached.

Two overall effects are clearly visible: (1) apart from
the regime with strong frustration, the maximum increases
with increasing cluster size. (2) The maximum tempera-
ture decreases with increasing cluster size. Taken together,
this indicates that entropy is shifted to lower tempera-
tures, a sign of the missing long-range correlations not
included in the partition function for the small clusters.

Our results are in qualitative agreement with those
in [5,19]. They represent a quantitative improvement over
the estimates of [5]. Direct comparison with [19] is made
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Fig. 16. Maximum of the heat capacity CV (T ) and its position
TCV as functions of the frustration angle φ. The open (solid)
circles denote the results for the 20-site (16-site) cluster, the
dotted line denotes the eight-site cluster.

difficult by the ambiguities associated with analytic con-
tinuation of a series using Padé approximants, and by the
fact that the limited number of cluster sizes we can use
at present do not permit a finite size scaling analysis. In
agreement with [5], Cmax

V drops sharply near the crossover
between the spin liquid regime and the collinear phase
around J2/J1 ≈ 0.6, corresponding to φ/π ≈ 0.17. Simi-
lar drops occur at the borders of the FM regime with the
NAF and CAF phases, respectively. These drops are ac-
companied with a smaller TCV in order to conserve the
entropy of the system.

In Figure 17, the behaviour of the maximum of the
magnetic susceptibility χmax together with the tempera-
ture at which the maximum is reached is displayed. In
contrast to the heat capacity, χ(T ) does not display an
anomaly upon crossing the spin-liquid regime. The maxi-
mum value diverges near the crossover to the FM regime,
while its position approaches T = 0, which is the expected
behaviour. Apart from that, the parameter dependence
of the maximum position Tχ is qualitatively the same as
for TCV .

Due to the sharp drop of the maximum of the heat
capacity, the ratio of the two temperatures Tχ and
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Fig. 17. Maximum of the uniform magnetic susceptibility
χ(T ) and its position Tχ as functions of the frustration an-
gle φ. The open (solid) circles denote the results for the 20-site
(16-site) cluster, the dotted line denotes the eight-site cluster.

TCV shows a pronounced anomaly which has a strong
dependence on cluster size in the spin liquid regime at
φ/π ≈ 0.17 (J2/J1 ≈ 0.6). In Figure 18, we have plotted
Tχ/TCV as a function of φ. For 0.3 ≤ φ/π ≤ 0.85, i.e., in
the collinear phase, Tχ/TCV does not depend on φ. For
negative values −1/2 < φ/π ≤ −0.15 (in the Néel phase),
Tχ/TCV depends roughly linearly on the frustration an-
gle, providing an additional means to determine this angle
uniquely from thermodynamic measurements alone. (Un-
fortunately, none of the three compounds discussed in this
paper fall into this category.)

3.3 Spin structure factor

The finite temperature Lanczos approach also permits
the direct evaluation of correlation functions. We consider
here the static spin structure factor given by

S(q, T ) =
1
N

N∑
i,j=1

eiq(Ri−Rj) 〈SiSj〉 . (37)

We have calculated the temperature dependence of the
spin-spin correlation functions 〈SiSj〉 for the 16-site
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Fig. 18. Ratio Tχ/TCV of the maximum positions of the uni-
form magnetic susceptibility χ(T ) and the heat capacity CV (T )
as a function of the frustration angle φ. The solid (dashed) lines
denote the results for the 20-site (16-site) cluster, the dotted
line denotes the eight-site cluster.

Table 4. List of momentum vectors q for the 16-site square
together with their multiplicity m.

q (0, 0)
(π

2
, 0
)

(π, 0)
(
π,

π

2

)
(π, π)

(π

2
,
π

2

)
m 1 4 2 4 1 4

cluster and performed the necessary summations to de-
termine S(q, T ). The irreducible triangle of the Brillouin
zone of the 16-site cluster contains six points which are
listed together with their multiplicity in Table 4. All points
lie on the edges and corners of the triangle.

In Figure 19, S(q) is displayed as a function of q ly-
ing on the edge of the irreducible Brillouin zone trian-
gle. We have chosen J1/kB = 1.25 K, J2/kB = 5.95 K
(collinear phase) and J1/kB = 5.95 K, J2/kB = 1.25 K
(Néel phase). These values for J1 and J2 correspond to
those found for Li2VOSiO4 in [19]; the former two cor-
respond to φ−/π = 0.43, the latter have a frustration
angle of φ+/π = 0.07. The dots represent the numeri-
cal results; the lines connecting them are just guides to
the eye. We plot S(q, T ) for ten different temperatures
kBT/Jc = 1, 2, 3 . . .10 with an offset of one half between
each two curves.

For Pb2VO(PO4)2, currently no suitable single crys-
tals are available to be able to measure S(q, T ) by dif-
fuse neutron scattering. Therefore, we have calculated the
angular average over the momentum transfer of S(q, T ),
which can be experimentally determined using powder or
polycrystalline material. The results are displayed in Fig-
ure 20 as S(|q|, T ) versus the modulus q = |q| of the mo-
mentum transfer and the temperature T . We have chosen
the two frustration angles φ− = 0.64 where the system is
in the collinear phase and φ+ = −0.11 corresponding to
the Néel phase. For the former, the maximum of S(|q|, T )
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Fig. 19. Static spin structure factor S(q, T ) of the 16-site
cluster for J1/kB = 1.25 K, J2/kB = 5.95 K (collinear phase,
top) and J1/kB = 5.95 K, J2/kB = 1.25 K (Néel phase, bot-
tom figure). The values chosen for J1 and J2 correspond to
those determined for Li2VOSiO4 in [19]. The lines are guides
to the eye, the dots denote the numerical results. The indi-
vidual curves in each figure, from bottom to top at q = Γ ,
correspond to fixed temperatures kBT/Jc = 1, 2, 4, and 8.

is located at |q| = π, the latter reaches its maximum near
the zone boundary where |q| =

√
2π.

To summarize, from Figures 19 and 20 we can conclude
that the structure factor provides a means to determine
the frustration ratio φ and therefore the ordering wave
vector unambiguously: for φ−, S(q) is strongly peaked at
q = (π, 0) or (0, π), while for φ+ it is peaked at q =
(π, π) as one would expect from the associated broken
symmetries for φ± in the thermodynamic limit.

Figure 21 displays the temperature dependence of
S(q, T ) for different values of q. In the collinear and the
Néel phase, at low temperatures, S(q, T ) develops a pro-
nounced anomaly at the ordering vector Q characterizing
the phase. This anomaly is the precursor of a divergence
of S(q, T → 0) for the infinite system. The asymptotic
value for kBT/Jc → ∞ is S(q) = S(S + 1) = 3/4 in each
case, as it should be.

In the collinear as well as in the Néel phase, the re-
lation S(Q) > S(q), q �= Q holds for all temperatures,
while for the spin liquid regime, this is qualitatively differ-
ent: here, the value of S(q, T ) is approximately the same
for q = (π, π) and q = (π, 0) or (0, π) at temperatures
kBT > Jc and always larger than the value for q = 0,
which is an additional indicator for the strong frustration
in that phase. The approximate equality of S(q, T ) values
for different wave vectors also supports the picture that
close to the SL phase domains of the CAF phase may
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Fig. 20. Static spin structure factor S(|q|, T ) of the 16-site
cluster for J1/kB = −6K, J2/kB = 10K (collinear phase, top)
and J1/kB = 10 K, J2/kB = −6K (Néel phase, bottom figure).
The values chosen for J1 and J2 correspond to those given for
Pb2VO(PO4)2 in [6].

easily form inside the NAF and vice versa as illustrated
in Figure 3.

To illustrate our numerical findings further, we have
taken the Fourier transform of the high-temperature series
expansion for the structure factor up to first order using
the result in ([32], page 709ff)

S(q, T ) = S(S + 1) +
S1(q, φ)
kBT/Jc

+ O
(

1
kBT/Jc

)2

, (38)

S1(q, φ) = −zS
2(S + 1)2

3

(
cosφ

1
2

(cos qx + cos qy)

+ sinφ cos qx cos qy

)
, (39)

where z = 4 is the coordination number of the lattice. In
Figure 21, the dash-dotted lines in the three panels for the
different regimes in the (J1, J2) phase diagram represent
the first two terms of equation (38) for the correspond-
ing characteristic wave vectors q = (π, 0) or (0, π) in the
collinear phase, q = (π, π) in the Néel phase, and both of
these values in the spin liquid regime.
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CAF
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SL

Fig. 21. Static spin structure factor S(q, T ) as a function of
temperature for q = (0, 0) (solid line), q = (π, 0) or (0, π) (dot-
ted line), and q = (π, π) (dashed line) for three different frus-
tration angles φ = π/2 (collinear phase, top), φ = tan−1(−1/2)
(Néel phase, middle), and φ = tan−1(1/2) (spin liquid, SL,
phase, bottom figure). The dash-dotted lines in each of the
three panels denote the high-temperature expansions (htse)
of the structure factor at the respective value for q where
S(q, T → 0) diverges, i.e., from top to bottom q = (π, 0) for
the collinear antiferromagnet, q = (π, π) for the Néel phase,
and q = (π, 0) or (π, π) in the spin liquid regime.

In the two phases where the system has a magneti-
cally ordered ground state, the high-temperature approx-
imation for S(q) at the respective ordering vector already
underestimates the exact-diagonalization results for tem-
peratures kBT/Jc ≈ 5 and below. In contrast, for the
spin liquid regime, S(q) is well reproduced for temper-
atures kBT well below Jc, demonstrating that long-range
correlation effects are suppressed due to the presence of
the strong frustration. From equation (38) we can also
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Fig. 22. Angular average Ŝ(q, φ) of the first-order term of the
high-temperature series expansion of the static spin structure
factor S(q, T ) as a function of the modulus q of the momentum
transfer and the frustration angle φ = −π/2 . . . π. φ = −π/2
corresponds to J1 = 0, J2/Jc = −1, which is the border be-
tween the ferromagnetic and the Néel phase in Figure 1, φ = π
corresponds to J1/Jc = −1 and J2 = 0. Going from φ = −π/2
to φ = π, we successively scan the Néel phase, the spin liquid
regime, the collinear and finally the ferromagnetic phase (see
text).
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Fig. 23. Same as Figure 22, here for the two fixed values φ =
φ± for Pb2VO(PO4)2 (Tab. 3). Solid line: φ/π = φ−/π = 0.64
(collinear phase), dash-dotted line: φ/π = φ+/π = −0.11 (Néel
phase).

conclude that at high temperatures kBT � Jc the re-
lation S(q = (π, 0)) = S(q = (π, π)) holds exactly for
J2/J1 = 1/2. We have chosen this particular frustration
ratio for the lower panel in Figure 21.

In Figures 22 and 23, we have plotted the angular aver-
age Ŝ(q, φ) of the first-order term of the high-temperature
series expansion, equation (39), given by

Ŝ(q, φ) =
1
2π

∫ 2π

0

dαS1(q, φ), q = q(cosα, sinα).

(40)
Figure 22 demonstrates how the maximum of this coeffi-
cient of the structure factor evolves as a function of φ.

Figure 23 shows Ŝ(q, φ) as a function of the modu-
lus of the momentum transfer q = |q| for the two possi-
ble values φ± of the frustration angle for Pb2VO(PO4)2.
The maximum for φ+ is near the zone boundary, whereas

the maximum for φ− occurs at smaller values for q, con-
firming the conclusions of our exact-diagonalization re-
sults. Hence, for kBT � Jc, it is possible to determine
experimentally the correct value of φ from the quantity
Ŝ(q, φ) ≈ kBT/Jc (S(q, T ) − S(S + 1)), and therefore to-
gether with the temperature dependences of χ(T ) and
CV (T ) the exchange parameters J1 and J2.

4 Summary and conclusions

Motivated by the discovery of Pb2VO(PO4)2, a “J1–
J2 compound” with at least one FM J , we have extended
the semiclassical description of the J1–J2 model to the
case with FM couplings. We discussed the possible na-
ture of the phase transitions between the three dominant
phases, FM, NAF and CAF. On the basis of our results,
the transition from CAF to FM seems to have much in
common with the transition from CAF to NAF, where an
intermediate spin liquid region is known to occur.

In addition to the phase diagram, the finite temper-
ature properties of the model were discussed in the light
of numerical results for 16 and 20 site clusters, using a
newly implemented finite temperature Lanczos algorithm.
In particular, we used this to calculate spin-spin correla-
tion functions at high temperature, which can be com-
pared with diffuse neutron scattering experiments. Our
numerical results should be of use in resolving the contro-
versy which surrounds parametrising J1–J2 compounds.

We also constructed a simple “tetragonal” mean field
theory for the J1–J2 model, and performed an exact ana-
lytic diagonalization of an 8-site cluster. While these can-
not be relied upon for quantitative comparison with ex-
periment, they can be used to fit susceptibility data very
easily, and seem to capture the essential physics of the
model. Both are discussed in the Appendix.

Much of the most interesting magnetic physics occurs
in frustrated FM’s — He III on graphoil and the CMR
manganites, to name but two — and it is our belief that
the J1–J2 model deserves further study as such.
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Physics of Complex Systems, and the following grants: Hun-
garian OTKA D32689, T037451, T038162 and the EU Center
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Appendix A: Tetragonal mean field theory

We take as a starting point the Hamiltonian in equa-
tion (8) for a single tetrahedron (cross-linked square), and
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2
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Fig. 24. The geometric content of the tetragonal mean-field
theory for the J1–J2 model.

Table 5. The energy spectrum of a single tetrahedron.

degeneracy Ω+ ωA ωB E

1 2 1 1 J1/2 + J2/2

1 1 1 0 −J2/2

1 1 0 1 −J2/2

1 1 1 1 −J1/2 + J2/2

1 0 1 1 −J1 + J2/2

1 0 0 0 −3J2/2

treat this fully connected 4-site cluster as a building block
for the lattice. From knowledge of the spectrum and de-
generacies given in Table 5, we can can calculate the par-
tition function of a single tetrahedron exactly, and from
that, its magnetic susceptibility and heat capacity [33].

Starting from knowledge of the exact susceptibility of
a tetrahedron χTET(T ), we can construct a mean field
theory for the lattice

χMF(T ) =
χTET(T )

1 + 3(J1 + J2)χTET(T )
. (41)

The geometric content of the mean-field approximation
is explained in Figure 24 — one quarter of the tetrahe-
dra making up lattice are treated exactly (double count-
ing J1 bonds), and the remaining bonds are treated on a
mean-field level in such a way that each spin sees three
exact and nine mean field bonds. Because of the very high
degree of frustration involved, this approach should pro-
vide a reasonable account of the high temperature sus-
ceptibility when the ground state of the tetrahedron is a
singlet, i.e. in the bulk NAF and CAF phases.

At high temperatures it is possible to expand the mag-
netic susceptibility found this way in 1/T , and to make
a direct comparison with high temperature series expan-
sions. Only the first two terms of equation (32) are re-
produced exactly, but the functional form of χ(T ) seems
none the less to give a reasonably good account of the
experimental measured susceptibility. Since the partition
function can be calculated for arbitrary magnetic field h, it
is also easy to examine non-linear effects in χ(T, h). The
4-site cluster is however, too small to give a convincing
description of cV (T ).

6 2 5 1

483748

52 1 65 2

374837

6 2 5 1

Fig. 25. The enumeration of sites used for the 8-site cluster.

Appendix B: Exact solution of the 8 site
cluster

In Appendix A, we used the property that the energy spec-
trum of a complete graph depends only on the total spin
to solve a fully connected 4-site cluster. We can use a gen-
eralization of the same trick [34] to solve the 8-site cluster
with periodic boundary conditions’s shown in Figure 25.
Written in terms of complete graphs, the Hamiltonian of
this cluster is:

H8sites = J1HCG
12345678 + (2J2 − J1)

(HCG
1234 + HCG

5678

)
− 2J2

(HCG
12 + HCG

34 + HCG
56 + HCG

78

)
(42)

where by HCG
12345678 we denote the Heisenberg Hamiltonian

on a complete graph spanned by the sites 1 to 8, i.e.

HCG
12345678 =

7∑
i=1

8∑
j=i+1

SiSj =
1
2

(
8∑

i=1

Si

)2

− 1
2

8∑
i=1

S2
i

(43)
and similarly for the others. The nice feature of the Hamil-
tonian (42) is a particular hierarchy of the terms: starting
from the basic building blocks — the states on sites (1, 2),
(3, 4), (5, 6), and (7, 8), chosen either as singlet or triplet
— we can construct successively the definite spin states on
sites 1, 2, 3, and 4 (S1234) and 5, 6, 7, and 8 (S5678), and
finally on the whole cluster (S12345678), and the energy for
that state can readily be determined. So the problem is re-
duced to bookkeeping. The spectrum is shown in Table 6.

From the knowledge of the spectrum and degeneracies,
we can calculate the exact partition function of the 8-site
cluster, and from that its heat capacity and magnetic sus-
ceptibility, just as for the 4-site cluster. Expanding the
magnetic susceptibility obtained in this way at high tem-
peratures, we again find that we reproduce correctly only
the first two terms of the high temperature series expan-
sion. However empirically, the magnetic susceptibility of
the 8-site cluster provides an excellent fit to experiment.
The estimate of heat capacity obtained in this way is also
more reliable than that found from the 4-site cluster of
Appendix A.
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Table 6. The energy spectrum of the 8 site cluster.

deg. S1...8 S1234 S12 S34 S5678 S56 S78 E

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 1 1 −4J2

1 0 0 1 1 0 1 1 −8J2

4 0 1 0 1 1 0 1 −2J1

4 0 1 0 1 1 1 1 −2J1 − 2J2

1 0 1 1 1 1 1 1 −2J1 − 4J2

1 0 2 1 1 2 1 1 −6J1 + 4J2

4 1 0 0 0 1 0 1 0

2 1 0 0 0 1 1 1 −2J2

4 1 0 1 1 1 0 1 −4J2

2 1 0 1 1 1 1 1 −6J2

4 1 1 0 1 1 0 1 −J1

4 1 1 0 1 1 1 1 −J1 − 2J2

4 1 1 0 1 2 1 1 −3J1 + 2J2

1 1 1 1 1 1 1 1 −J1 − 4J2

2 1 1 1 1 2 1 1 −3J1

1 1 2 1 1 2 1 1 −5J1 + 4J2

2 2 0 0 0 2 1 1 2J2

2 2 0 1 1 2 1 1 −2J2

4 2 1 0 1 1 0 1 J1

4 2 1 0 1 1 1 1 J1 − 2J2

4 2 1 0 1 2 1 1 −J1 + 2J2

1 2 1 1 1 1 1 1 J1 − 4J2

2 2 1 1 1 2 1 1 −J1

1 2 2 1 1 2 1 1 −3J1 + 4J2

4 3 1 0 1 2 1 1 2J1 + 2J2

2 3 1 1 1 2 1 1 2J1

1 3 2 1 1 2 1 1 4J2

1 4 2 1 1 2 1 1 4J1 + 4J2

Appendix C: Lower-bound calculation

A lower-bound estimate of the ground-state energy for
spin systems can be obtained by exactly diagonalizing the
Hamiltonian on a small cluster with open boundary condi-
tions. The small cluster is chosen such that it can be used
to tile the complete lattice, in which case we can write the
Hamiltonian of the system as

H =
∑

i

Hi (44)

where Hi is the Hamiltonian for an individual cluster. The
simplest such cluster for the square lattice with nearest
neighbour bonds is the cross–linked square (tetrahedron),
discussed above. The ground state wave function of the
complete lattice

H|ψ0〉 = E0|ψ0〉 (45)

can then be used as a variational wave function, providing
an upper bound on the exact ground state energy Ecluster

of a single cluster

〈ψ0|Hi|ψ0〉 ≥ Ecluster. (46)

It follows that Ecluster must in turn provide a lower bound
on the ground state energy E0 per spin of the complete
lattice. This approach was introduced by Anderson [35],
and later improved by Nishimori and Ozeki, who opti-
mized the lower bound by treating the exchange on the
bonds within the cluster as a variational parameter [36].

K2 K2’

K3 K3

K1’1K

’

Fig. 26. The 9-site cluster with open boundary conditions
used for the calculation of the lower bounds.

We have refined the method further by allowing additional
longer range bonds in the cluster which cancel when the
lattice is tiled by the sum over translated clusters. The 9-
site cluster we used is shown in Figure 26, with constraints
4K1 + 2K ′

1 = J1, 2K2 + 2K ′
2 = J2 and 2K3 +K ′

3 = 0.

References

1. G. Misguich, C. Lhuillier, Frustrated Spin Systems, 2nd
edn., edited by H.T. Diep (World Scientific, 2004)

2. S. Sorella, Phys. Rev. Lett. 80, 4558 (1998)
3. P. Millet, C. Satto, Mat. Res. Bull. 33, 1339 (1998)
4. R. Melzi, P. Carretta, A. Lascialfari, M. Mambrini,

M. Troyer, P. Millet, F. Mila, Phys. Rev. Lett. 85, 1318
(2000)

5. R. Melzi, S. Aldrovandi, F. Tedoldi, P. Carretta, P. Millet,
F. Mila, Phys. Rev. B 64, 024409 (2001)

6. E.E. Kaul, H. Rosner, N. Shannon, R.V. Shpanchenko,
C. Geibel, International Conference on Magnetism, Rome
(to be published, 2003)

7. J. Villain, J. Phys. Chem. Sol. 11, 303 (1959)
8. R.R.P. Singh, Z. Weihong, C.J. Hamer, J. Oitmaa, Phys.

Rev. B 60, 7278 (1999)
9. P. Chandra, B. Doucot, Phys. Rev. B 38, 9335 (1988)

10. E.F. Shender, Sov. Phys. - JETP 56, 178 (1982)
11. C.L. Henley, Phys. Rev. Lett. 62, 2056 (1989)
12. P. Chandra, P. Coleman, A.I. Larkin, Phys. Rev. Lett. 64,

88 (1990)
13. J. Igarashi, Phys. Rev. B 46, 10763 (1992)
14. G. Misguich, B. Bernu, C. Lhuillier, C. Waldtmann, Phys.

Rev. Lett. 81, 1098 (1998)
15. J. Fouet, P. Sindzingre, C. Lhuillier, Eur. Phys. J. B 20,

241 (2001)
16. E. Dagotto, A. Moreo, Phys. Rev. B 39, 4744 (1989)
17. O.P. Sushkov, J. Oitmaa, Z. Weihong, Phys. Rev. B 63,

104420 (2001)
18. H. Rosner, R.R.P. Singh, W.H. Zheng, J. Oitmaa, W.E.

Pickett, Phys. Rev. B 67, 014416 (2003)



616 The European Physical Journal B

19. G. Misguich, B. Bernu, L. Pierre. Phys. Rev. B 68, 113409
(2003)

20. H.J. Schulz, T.A.L. Ziman, D. Poilblanc, J. Phys. I France
6, 675 (1996)

21. P.W. Anderson, Phys. Rev. 86, 694 (1952)
22. B. Bernu, C. Lhuillier, L. Pierre, Phys. Rev. Lett. 69, 2590

(1992)
23. P. Azaria, B. Delamotte, D. Mouhanna, Phys. Rev. Lett.

70, 2483 (1993)
24. E. Rastelli, L. Reatto, A. Tassi, J. Phys. C 19, 6623 (1986)
25. D.V. Dmitriev, V.Y. Krivnov, A.A. Ovchinnikov, Phys.

Rev. B 55, 3620 (1997)
26. H. Rosner, R.R.P. Singh, W.H. Zheng, J. Oitmaa, S.-L.

Drechsler, W.E. Pickett, Phys. Rev. Lett. 88, 186405
(2002)

27. M. Roger, Phys. Rev. B 58, 11115 (1998)

28. C. Weber, L. Capriotti, G. Misguich, F. Becca, M. Elhajal,
F. Mila, Phys. Rev. Lett. 91, 177202 (2003)

29. J. Jaklic, P. Prelovsek, Adv. Phys. 49, 1 (2000)
30. R.R.P. Singh, R. Narayanan, Phys. Rev. Lett. 65, 1072

(1990)
31. S. Bacci, E. Gagliano, E. Dagotto, Phys. Rev. B 44, 285

(1991)
32. N.W. Ashcroft, N.D. Mermin, Solid State Physics

(Saunders College Publishing, Philadelphia, 1988)
33. N. Shannon, Eur. Phys. J. B 27, 527 (2002)
34. M.V.D. Bossche, F.-C. Zhang, F. Mila, Eur. Phys. J. B

17, 367 (2000)
35. P. W. Anderson, Phys. Rev. 83, 1260 (1951)
36. H. Nishimori, Y. Ozeki, J. Phys. Soc. Jpn 58, 1027 (1989)


